-
J. Huang, K. Yuan, C. Huang, K. Huang, "D^2-JSCC: Digital Deep Joint Source-channel Coding for Semantic Communications," submitted to IEEE for possible publication (Available: ArXiv)
-
X. Chen, K. B. Letaief, K. Huang, "On the View-and-Channel Aggregation Gain in Integrated Sensing and Edge AI," to appear in IEEE J. Sel. Areas in Commun. (Available: ArXiv)
-
H. Wu, X. Chen, K. Huang, "Device-Edge Cooperative Fine-Tuning of Foundation Models as a 6G Service," to appear in IEEE Wireless Commun. (Available: ArXiv)
-
Y. Cang, M. Chen, K. Huang, "Joint Batching and Scheduling for High-Throughput Multiuser Edge AI with Asynchronous Task Arrivals," to appear in IEEE Trans. on Wireless Commun. (Available: ArXiv)
-
H. Wu, Q. Zeng, K. Huang, "Efficient Multiuser AI Downloading via Reusable Knowledge Broadcasting" to appear in IEEE Trans. on Wireless Commun. (Available: ArXiv)
-
Z. Wang, K. Huang, Y C. Eldar "Spectrum Breathing: Protecting Over-the-Air Federated Learning Against Interference," to appear in IEEE Trans. on Wireless Commun. (Available: ArXiv)
-
Z. Liu, Q. Lan, A E. Kalør, P. Popovski, K. Huang, "Over-the-Air Multi-View Pooling for Distributed Sensing," IEEE Trans. on Wireless Commun. vol. 61, no. 12, pp. 70-76, December 2023 (Available: ArXiv)
-
K. Huang, Q. Lan, Z. Liu. L. Yang, "Semantic Data Sourcing for 6G Edge Intelligence," IEEE Commun. Mag. vol. 61, no. 12, pp. 70-76, December 2023 (Available: ArXiv)
-
H. Wu, H. Tan, R. He, X. Qi, K. Huang, "Vertical Layering of Quantized Neural Networks for Heterogeneous Inference," IEEE Trans. Pattern Anal. Mach. Intell. vol. 45, no. 12, pp. 15964-15978, Dec. 2023 (Available: ArXiv)
-
K. Huang, H. Wu, Z. Liu, X. Qi, "In-situ Model Downloading to Realize Versatile Edge AI in 6G Mobile Networks," IEEE Wireless Commun. vol. 30, no. 3, pp. 96-102, June 2023 (Available: ArXiv)
-
Z. Liu, Q. Lan, and K. Huang, "Resource Allocation for Multiuser Edge Inference with Batching and Early Exiting," IEEE J. Sel. Areas in Commun. vol. 41, no. 4, pp. 1186-1200, April 2023 (Available: ArXiv)
-
Z. Lin, Y. Gong, and K. Huang, "Distributed Over-the-air Computing for Fast Distributed Optimization: Beamforming Design and Convergence Analysis," IEEE J. Sel. Areas in Commun. vol. 41, no. 1, pp. 274-287, Jan. 2023 (Available: ArXiv)
-
X. Li, G. Zhu, K. Han, Y. Gong, K. Huang, "Energy Efficient Wireless Crowd Labelling: Joint Annotator Clustering and Power Control," IEEE Trans. on Wireless Commun. vol. 22, no. 3, pp. 2022-2035, March 2023 (IEEE Explore).
-
P. Popovski, F. Chiariotti, K. Huang, A. E. Kalør, M. Kountouris, N. Pappas, B. Soret, "A Perspective on Time towards Wireless 6G," in Proc. of the IEEE, vol. 10, no. 8, pp. 116-1146, Aug. 2022. (Available: ArXiv)
-
Q. Zeng, Y. Du, K. Huang, "Wirelessly Powered Federated Edge Learning: Optimal Tradeoffs Between Convergence and Power Transfer" IEEE Trans. on Wireless Commun. . vol. 21, no. 1, pp. 680-695, Jan. 2022. (IEEE Xplore)
-
S. Huang, Z. Zhang, S. Wang, R. Wang, K. Huang, "Accelerating Federated Edge Learning via Topology Optimization," IEEE Internet Things J. vol. 10, no. 3, pp. 2056-2070, 1 Feb.1, 2023 (Available: ArXiv)
-
X. Chen, E. G. Larsson, K. Huang, "Analog MIMO Communication for One-shot Distributed Principal Component Analysis," IEEE Trans. Signal Process. vol. 70, pp. 3328-3342, 2022 (Available: ArXiv)
-
Q. Lan, Q. Zeng, P. Popovski, D. Gündüz, and K. Huang, "Progressive Feature Transmission for Split Inference at the Wireless Edge," IEEE Trans. on Wireless Commun. vol. 22, no. 6, pp. 3837-3852, June 2023 (Available: ArXiv)
-
Q. Lan, D. Wen, Z. Zhang, Q. Zeng, X. Chen, P. Popovski, K. Huang "What is Semantic Communication? A View on Conveying Meaning in the Era of Machine Intelligence," invited for J. Commun. Inf. Netw., 2021. (Available: ArXiv)
-
D. Wen, K. Jeon, K. Huang, "Federated Dropout -- A Simple Approach for Enabling Federated Learning on Resource Constrained Devices," IEEE Wireless Communication Letters. vol. 11, no. 5, pp. 923-927, May 2022. (Available: ArXiv)
-
Z. Lin, X. Li, V. Lau, Y. Gong and K. Huang, "Deploying Federated Learning in Large-Scale Cellular Networks: Spatial Convergence Analysis," IEEE Trans. on Wireless Comm. vol. 21, no. 3, pp. 1542-1556, March 2022. (Available: ArXiv)
-
Q. Zeng, Y. Du and K. Huang, "Wirelessly Powered Federated Edge Learning: Optimal Tradeoffs Between Convergence and Power Transfer," IEEE Trans. on Wireless Comm. vol. 21, no. 1, pp. 680-695, Jan. 2022. (Available: ArXiv)
-
Z. Zhang, G. Zhu, R. Wang, V. K. N. Lau, and K. Huang, "Turning Channel Noise into an Accelerator for Over-the-Air Principal Component Analysis", IEEE Trans. on Wireless Comm. vol. 21, no. 10, pp. 7926-7941, Oct. 2022. (ArXiv)
-
M. Chen, D. Gündüz, K. Huang, W. Saad, M. Bennis, A. V. Feljan, and H. V. Poor, "Distributed Learning in Wireless Networks: Recent Progress and Future Challenges", submitted to IEEE J. Sel. Area on Commun. . (ArXiv)
-
D. Wen, K.-J. Jeon, M. Bennis, K. Huang, "Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned Edge Learning Over Broadband Channels", submitted to IEEE for possible publication. (ArXiv)
-
G. Zhu, J. Xu and K. Huang, "Over-the-Air Computing for 6G -- Turning Air into a Computer", submitted to IEEE for possible publication. (ArXiv)
-
Q. Lan, Y. Du, P. Popovski and K. Huang, "Capacity of Remote Classification over Wireless Channels", to appear in IEEE Trans. Commun. . (ArXiv)
-
J. Wen, M. Sheng, J.g Li, and K. Huang, "Assisting for Intelligent Wireless Networks with Traffic Prediction: Exploring and Exploiting Predictive Causality in Wireless Traffic", to appear in IEEE Commun. Magazine, 2020. (IEEE Xplore)
-
X. Li, G. Zhu, K. Shen, W. Yu, Y. Gong, and K. Huang, “Joint Annotator-and-Spectrum Allocation in Wireless Networks for Crowd Labelling”, IEEE Trans. Wireless Commun. , vol. 19, no. 9, pp. 6116-6129, Sept. 2020. (ArXiv)
-
Q. Lan, B. Lv, R. Wang, K. Huang and Y. Gong, "Adaptive Video Streaming in Massive MIMO Networks via Approximate MDP and Reinforcement Learning", IEEE Trans. Wireless Commun. , vol. 19, no. 9, pp. 5716-5731, Sept. 2020. (IEEE Xplore)
-
J. Ren, Y. He, D. Wen, G. Yu, K. Huang, and D. Guo, "Scheduling in Cellular Federated Edge Learning with Importance and Channel Awareness”, IEEE Trans. Wireless Commun., vol. 19, no. 11, pp. 7690-7703, Nov. 2020. (ArXiv)
-
D. Wen, M. Bennis, K. Huang, “Joint Parameter-and-Bandwidth Allocation for Improving the Efficiency of Partitioned Edge Learning”, IEEE Trans. Wireless Commun., vol. 19, no. 12, pp. 8272-8286, Nov. 2020. (ArXiv)
-
G. Zhu, Y. Du, D. Gunduz, and K. Huang, “One-Bit Over-the-Air Aggregation for Communication-Efficient Federated Edge Learning: Design and Convergence Analysis”, to appear in IEEE Trans. Wireless Commun., 2020. (ArXiv)
-
D. Wen, X. Li, Q. Zeng, J. Ren and K. Huang, “An Overview of Data-Importance Aware Radio Resource Management for Edge Machine Learning”, an invited paper in Journal of Communications and Information Networks, 2020. (ArXiv)
-
D. Liu, G. Zhu, J. Zhang, and K. Huang, “Data-Importance Aware User Scheduling for Communication-Efficient Edge Machine Learning”, to appear in IEEE Trans. Cognitive Comm. and Networking, 2020. (ArXiv)
-
Y. Du, S. Yang, and K. Huang, “High-Dimensional Stochastic Gradient Quantization for Communication-Efficient Edge Learning”, to appear in IEEE Trans. Signal Process. , 2020. (ArXiv)
-
Q. Zeng, Y. Du, K. Leung and K. Huang, "Energy-Efficient Resource Management for Federated Edge Learning with CPU-GPU Heterogeneous Computing”, submitted to IEEE for possible publication. (ArXiv)
-
G. Zhu, Y. Wang, and K. Huang, "Broadband Analog Aggregation for Low-Latency Federated Edge Learning”, accepted to IEEE Trans. Wireless Commun.. (ArXiv)
-
D. Liu, G. Zhu, Q. Zeng, J. Zhang, and K. Huang, "Wireless Data Acquisition for Edge Learning: Data-Importance Aware Retransmission”, to appear in IEEE Trans. Wireless Commun., 2020. (ArXiv)
-
G. Zhu, D. Liu, Y, Du, C. You, J. Zhang, and K. Huang, "Towards an Intelligent Edge: Wireless Communication Meets Machine Learning”, to appear in IEEE Commun. Magazine . (ArXiv)
-
J. Zhang, G. Zhu, R. Heath Jr., and K. Huang, “Grassmannian Learning: Embedding Geometry Awareness in Shallow and Deep Learning”, submitted to IEEE for possible publication. (ArXiv)
-
Y. Du and K. Huang, "Fast Analog Transmission for High-Mobility Wireless Data Acquisition in Edge Learning", IEEE Wireless Commun. Lett., vol. 8, no. 2, pp. 468 - 471, April 2019. (ArXiv)
-
Y. Du, G. Zhu, J. Zhang, and K. Huang, "Automatic Recognition of Space-Time Constellations by Learning on the Grassmann Manifold", IEEE Trans. on Signal Process. , vol. 66, no. 22, pp. 6031-6046, Nov. 2018. (ArXiv)
-
G. Zhu, S.-W. Ko and K. Huang, "Inference from Randomized Transmissions by Many Backscatter Sensors", IEEE Trans. on Wireless Commun., vol. 17, no. 5, pp 3111-3127, May 2018. (ArXiv)